21 November 2025 - List of blocked donors from foreign sperm banks for whom the allowed number of families in Belgium has been exceeded

Donor	Bank	Date of block	# families	Descripiton
Donor 1	ESB	23MAY2022	7	Donor is a carrier of classic galactosemia/Shwachman-Diamond syndrome.
Donor 2	ESB	11JUL2022	19	A pathogenic variant in the PHA gene has been identified in donor and he is a carrier of PKU.
Donor 3	ESB	02SEP2022	10	Donor is a carrier of autosomal recessive inherited mild-to-moderate sensorineural hearing loss due to a STRC deletion.
Donor 4	ESB	15DEC2022	14	The donor is a carrier of congenital disorder of glycosylation type Ia.
Donor 5	ESB	18JAN2023	17	Hip dysplasia in a donor confers an increased risk to his offspring.
Donor 6	ESB	20MAR2023	9	Donor is a carrier of c.10955delC(p.Pro3652Glnfs*2) in the PKHD1 gene.
Donor 7	ESB	24MAR2023	11	A deletion of exon 11-14 in the GLI2 gene in a donor child does confer an increased risk to donor's offspring.
Donor 8	ESB	15JUN2023	8	Donor is compound heterozygous for hemochromatosis.
Donor 9	ESB	04JUL2023	8	A duplication of 22q11 in the donor might confer an increased risk to his offspring.
Donor 10	ESB	05JUL2023	12	Hearing impairment in a donor child may confer an increased risk to donor's offspring.
Donor 11	ESB	08AUG2023	11	A 57 kb deletion in CTNS-gene in a donor child does confer an increased risk to donor's offspring.
Donor 12	ESB	30OCT2023	38	TP53 variant in a donor does confer an increased risk to donor's offspring. Donor number 7069, alias 'Kjeld'.
Donor 13	ESB	08NOV2023	11	Child diagnosed with SCID, severe combined immune defiency. Due to the fact that donor is known carrier of a recessive gene variant.
Donor 14	ESB	07DEC2023	12	Zellweger syndrome in a donor child does confer an increased risk to donor's offspring.

Donor 15	ESB	20DEC2023	7	Isovaleric acidemia in a donor child, and subsequent genetic analysis showing that donor is heterozygous carrier of a pathogenic variant in the IVD gene; c.158G>A, p.Arg53His, does confer an increased risk to donor's offspring.
Donor 16	ESB	31JAN2024	10	Hydronephrosis in a donor child does confer an increased risk to donor's offspring.
Donor 17	ESB	1MAY2024	18	MSH2 variant in a donor does confer an increased risk to donor's offspring. His gametes are to be permanently blocked.
Donor 18	ESB	25JUN2024	14	A pathogenic variant in the GAA gene does confer an increased risk to a donor child. His gametes are to be permanently blocked.
Donor 19	ESB	07NOV2024	8	Pathogenic MYBPC3 variant in a fetus and found in the donor confers an increased risk to donor's offspring.
Donor 20	ESB	19NOV2024	17	Cardiomyopathy in a donor child and subsequent diagnosis of heterozygosity of a pathogenic variant in APLK3 gene in the donor confers an increased risk to donor's offspring. The donor is blocked and his gametes can no longer be used.
Donor 21	ESB	20JAN2025	10	Child was diagnosed with type IV spinal muscular atrophy (SMA). SMA is an autosomal recessive disease. The risk for future donor children is significantly increased.
Donor 22	ESB	21JAN2025	17	Heterozygous deletions at 2p16.3 involving NRXN1 and intragenic mutations of the same gene have been reported in individuals affected by a wide spectrum of neurodevelopmental and psychiatric disorders, including isolated intellectual disability (ID)/global develop-mental delay (GDD), autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia and bipolar disorder. In a proportion of these patients, neurological involvement (i.e. epilepsy), facial dysmorphism, and congenital heart defects have been observed as associated features. Genotype–phenotype correlations have also been reported.

Donor 23	Cryos	25FEB2025	9	A child has been diagnosed with Usher Syndrome type 2 and genetic test has found two mutations in USH2A. Usher Syndrome type 2 is inherited in a recessive manner, which means that both genetic parents most likely are carriers of the condition. The risk of an affected child is lower than 1%. Donor gametes were blocked for new customers (<1% recurrence risk) 02NOV2022 but can be used for siblings.
Donor 24	ESB	30APR2025	27	A child is reported to have Marfan syndrome. The variant FBN1 (NM_000138.4): c5880_164+4097del heterozygot.
Donor 25	ESB	07JUL2025	19	The donor is found to be a healthy carrier of a pathogenic variant in the CYP21A2 gene. Non-classical congenital adrenal hyperplasia (CAH) due to compound heterozygous mutations in the CYP21A2 gene in a donor child confers an increased risk to donor's offspring.
Donor 26	ESB	19AUG2025	9	Deletion of the CYP21A2 gene in a donor does confer an increased risk to donor's offspring.
Donor 27	ESB	13OCT2025	12	A pathogenic (class V) genetic variant was observed in the Thyroglobulin (TG) gene. Congenital hypothyroidism in a donor child does confer an increased risk to donor's offspring.
Donor 28	ESB	20OCT2025	22	The donor is a carrier of Metachromatic leukodystrophy (MLD), since a pathogenic genetic variant in the Arylsulfatase A (ARSA) gene is identified in a heterozygous state. A pathogenic genetic variant :NM_000487.6:c.917C>T, identified in the donor does confer an increased reproductive risk.
Donor 29	ESB	OCT/NOV2025	15	The donor has been under investigation and the results have shown that he is a healthy carrier of Spinal Muscular Atrophy, since MLPA analysis shows a deletion of one of the SMN1 genes.